
Axel Motion Control Library – Customizing
Axis Driver

Sommario
Prerequisites .. 1

Introduction ... 1

Customization of the PCT descriptor ... 2

Multiple Axes devices .. 4

Customization of the driver function block ... 5

Method list of the MC_Driver_DS402 function block ... 5

Fixed method list ... 6

Model of the SM callback - deferred or background services ... 6

Overwritable method list... 8

Prerequisites
Axel Motion Control Library works with any recent PLC runtime, and a fieldbus enabled to motion control
(currently EtherCAT).

It uses Object Oriented feature, so the runtime and compiler should support in and it should be enabled,

it uses references, and the compiler option "VAR_IN_OUT by reference" should be enabled.

Introduction
LogicLab Motion Control Library works on axis drivers, which have to be implemented for any drive and
motor used with the library.

The driver model is based on CiA 402, or DS 402 specification model.

The MC Library mainly works on variables which are sent or received from fieldbus by means of PDO data
exchange.

Some additional behavior can be customized in a driver function block running cyclically.

The customization of driver requires two steps:

 1) the customization of the fieldbus descriptor of the slave, actually only EtherCAT drives are
supported.

 2) the customization of a PLC function block representing the axis model, in PLC code.

Customization of the PCT descriptor
 First step to enable an EtherCAT drive to the Motion library is to change its pct descriptor.

 - Import the ESI file in the Catalog

 - Find the related PCT in the folder C:\Program Files (x86)\Axel PC Tools\Catalog\EtherCATcustom

 - Suppose your drive file is AKD_6A_00414B44_00000002.pct, you can copy it in
AKD_6A_00414B44_00000002_Motion.pct, edit with a Text Editor and add the following sections:

 <?xml version="1.0" encoding="utf-8"?>
<devicetemplate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <deviceinfo caption="AKD_Motion_Motion" name="AKD_6A_00414B44"
version="2.0" icon="img\DRIVE.BMP"
deviceid="AKD_6A_00414B44_00000002_Motion" location="ECATVendor6A\Drive"
importedFromESI="true" ECATVendorID="106" ECATProductCode="4279108"
ECATRevisionNo="2">
 <description LcId="1033">AKD EtherCAT Drive (CoE) Motion
Enabled</description>
 <protocols>
 <protocol>EtherCAT_port_Y</protocol>
 </protocols>
 <groups>
 <group name="ECATVendor6A" icon="img\ECATVendor6A.BMP">
 <transl LcId="1033">Kollmorgen</transl>
 </group>
 <group name="Drive" icon="img\DRIVE.BMP"
SortOrder="520">
 <transl LcId="1033">Drives</transl>
 </group>
 </groups>
 <motionAxes>
 <axis name="axis1">
 <drivers>
 <driver>MC_Driver_KollmorgenAKD</driver>
 </drivers>
 <defaults roundSteps="1048576"/>
 <mappings ds402="false">

 <mapping index="0x6040" subindex="0"
name="controlword"/>
 <mapping index="0x6041" subindex="0"
name="statusword"/>
 <mapping index="0x6060" subindex="0"
name="op_mode"/>
 <mapping index="0x6061" subindex="0"
name="op_mode_display"/>
 <mapping index="0x60C1" subindex="1"
name="target_position"/>
 <mapping index="0x60FF" subindex="0"
name="target_velocity"/>
 <mapping index="0x6071" subindex="0"
name="target_torque"/>
 <mapping index="0x6063" subindex="0"
name="actual_position"/>
 <mapping index="0x606C" subindex="0"
name="actual_velocity"/>
 <mapping index="0x6077" subindex="0"
name="actual_torque"/>
 <mapping index="0x603F" subindex="0"
name="errorcode"/>
 <mapping index="0x60F4" subindex="0"
name="follow_err_actual"/>
 </mappings>
 </axis>
 </motionAxes>
 </deviceinfo>

Note that in the previous example the following facts

- The whole section motionAxes is added to the imported PCT
- MC_Driver_KollmorgenAKD is the name of the driver function block to be written
- roundSteps field is the default value of encoder pulse for every round

The library will use the mapping information to map PDO input output variables directly into the fieldbus
configuration.

Every mapping tag maps an object dictionary index/subindex with the default mnemonics in DS402 model

In the table the default mapping, if your drive have a standard DS402 mapping you can avoid inserting the
mapping section, but you must specify ds402="true"

Type Mnemonics Dir OD Index OD subi Description
UINT controlword Out 0x6040 0 Control word as described in CiA402
UINT statusword In 0x6041 0 Status word as described in CiA402
SINT op_mode Out 0x6060 0 Modes of operation
SINT op_mode_display In 0x6061 0 Modes of operation actual value
DINT target_position Out 0x607A 0 Target position, if position driven
DINT target_velocity Out 0x60FF 0 Target velocity, if velocity driven
INT target_torque Out 0x6071 0 Target torque, if torque driven
DINT actual_position In 0x6064 0 Actual position
DINT actual_velocity In 0x606C 0 Actual velocity
INT actual_torque In 0x6077 0 Actual torque

UINT axis1_errorcode In 0x603F 0 Error code
DINT axis1_follow_err_actual In 0x60F4 0 Position error

Another mapping example is:

 <motionAxes>
 <axis name="axis1">
 <drivers>
 <driver>MC_Driver_Bonfiglioli</driver>
 </drivers>
 <mappings ds402="true"/>
 <defaults roundSteps="65536"/>
 </axis>
 </motionAxes>

Note that the PCT reflects the ESI file of the axis drive,

NOTE: You may need to modify the ESI section in order to have PDO’s already configured to map the
required variables.

Multiple Axes devices
There exists EtherCAT slaves which control multiple axes,

they have mapped on PDOs the variable for each axis. The object, in the object dictionary are usually
separated by a fixed offset, i.e. 0x800.

To manage that the field objectsIndexOffset have been introduced in the mappings tab.

An example of a multiple axes PCT is:

<motionAxes>

 <axis name="axis1">

 <drivers>

 <driver>MC_Driver_DS402</driver>

 </drivers>

 <mappings ds402="true" objectsIndexOffset="0x800"/>

 <defaults roundSteps="65536"/>

 </axis>

 <axis name="axis2">

 <drivers>

 <driver>MC_Driver_DS402</driver>

 </drivers>

 <mappings ds402="true" objectsIndexOffset="0x800"/>/>

 <defaults roundSteps="65536"/>

 </axis>

 <axis name="axis3">

 <drivers>

 <driver>MC_Driver_DS402</driver>

 </drivers>

 <mappings ds402="true" objectsIndexOffset="0x800"/>

 <defaults roundSteps="65536"/>

 </axis>

</motionAxes>

The index of the object to be mapped id calculated with the following formula:

effectiveIndex = normalIndex + objectIndexOffset * axisNumber

Customization of the driver function block
Every axis type needs a function block that represents its type of axis, the function block is responsible of:

 - some measurement and state update

 - execute long commands on guide of the library blocks (deferred commands)

 - execute long commands in the background task on guide of the library blocks (background
commands)

 - react to movement errors with proper action, it could be an emergency halt ramp

Adopting an Object-Oriented approach, every driver function block must inherit from the base function
block driver MC_Driver_DS402, in the library MC_Driver_DS402.

The library contains some driver examples.

The new driver could overwrite some methods to specialize or improve the behavior.

Method list of the MC_Driver_DS402 function block
Method Task Return value Parameters Should be overridden
Execute cyclic BOOL AXIS_REF^ NO, entry point automatically

called every cyclic execution
Background bkg BOOL AXIS_REF^ NO, entry point automatically

called every background
execution

BackgroundCommandSM bkg BOOL AXIS_REF^ NO, state machine of the
background commands*

ComputeMotionStatus cyclic BOOL AXIS_REF^ NO*, it computes motion status
of the axis

DeferredCommandSM cyclic BOOL AXIS_REF^ NO, state machine of the
deferred commands*

SDOWrite bkg BOOL Index,
subindex,
value, size

NO, utility command to write
SDO to the slave

StartCmd_HomeSetParams bkg BOOL
StartCmd_Homing bkg BOOL
StartCmd_PowerOff cyclic BOOL
StartCmd_PowerOn cyclic BOOL
BackgroundProcessing_user bkg BOOL AXIS_REF^
CyclicProcessing_user cyclic BOOL AXIS_REF^
GetAxisReadyToMove NA BOOL
OnMotionFailure NA BOOL
OnMotionOutOfRange NA BOOL

Fixed method list
Execute
It is the main method of the driver, it is automatically called every Fast cycle execution,

it initializes some global environment variables, calls the callback of the cyclic driver processing.

It computes motion status and calls DeferredCommandSM to perform the deferred commands.

Background
Similar to the Execute method, this is the background entry point to the services which are to be performed
in the background.

BackgroundCommandSM
This manages the background state machine invoked by some blocks (actually the MC_Home block) *

ComputeMotionStatus
It computes the motion status of the axis.

It uses some filters, but it can be overwritten, although the default implementation should satisfy any
situation.

DeferredCommandSM
This manages the timed state machine invoked by some blocks

SDOWrite
It is an utility function useful to write SDO on the axis for configuration purpose,

it cannot be called in a timed task and it is blocking.

Model of the SM callback - deferred or background services
When a block requires a deferred or background service, it signal the event on a field of the AXIS_REF of the
axis.

The base implementation in the function block MC_Driver_DS402 invokes some callbacks, in the fast or
background task, depending on the event type, to specify the Start of a service to be performed or periodic
calls to subsequent evolution of the Action.

For example, when the engine requires the axis to be powered on, it first calls the callback method
StartCmd_PowerOn and sequentially, every fast cycle, the method ActionCmd_PowerOn until the action is
finished.

As an example let see the default implementation of the methods StartCmd_PowerOn and
ActionCmd_PowerOn.

 StartCmd_PowerOn:

 op_mode^ := TO_SINT(8); (* Sets the op_mode mapped variable to
the value 8 - Cyclic synchronous position mode *)
 controlword^ := 16#0; (* Sets zero to the control word *)
 driver^.di.command := MCD_CMD_BUSY; (* Signal the command is
busy - executing *)
 driver^.di.response := MCD_RESP_NONE; (* Signal no response -
command done or failed - is ready to be returned to blocks *)
 driver^.di.action := MCD_CMD_POWER_ON; (* Sets the next tyme
this action have to be called *)
 sm_step := 1; (* State machine step of the action *)

 ActionCmd_PowerOn:

 // DS 402 transitions to power on
 CASE sm_step OF
 1:
 controlword^ := 16#80; // reset errors
 sm_step := 2;
 2:
 IF statusword^ MOD 16#100 = 16#50 THEN
 controlword^ := 6;
 sm_step := 3;
 END_IF;
 3:
 IF statusword^ MOD 16#100 = 16#31 THEN
 controlword^ := 7;
 target_position^ := actual_position^;
 sm_step := 4;
 END_IF;
 4:
 IF statusword^ MOD 16#100 = 16#33 THEN
 controlword^ := 16#F;
 END_IF;
 IF statusword^ MOD 16#100 = 16#37 THEN (* Power On procedure
done *)
 driver^.di.command := MCD_CMD_NONE; (* Frees the
possibility for the engine to send another command *)
 driver^.di.response := MCD_RESP_POWER_ON; (* Send
response ok for the command to the engine *)
 driver^.di.action := MCD_CMD_NONE; (* No other action
callback should be called *)
 sm_step := 0; (* Reset state machine step *)
 END_IF;
 END_CASE;

Lorem ipsum ecc…

Overwritable method list
StartCmd_HomeSetParams
Executed in background task -> starts the action of setting the homing parameters to drive.

StartCmd_Homing
Executed in background task -> starts the action of homing actual procedure.

StartCmd_PowerOff
Executed in fast task -> Starts the action of switching off the power of the axis.

StartCmd_PowerOn
Executed in fast task -> Starts the action of switching on the power of the axis.

ActionCmd_HomeSetParams
Executed in background task -> Set the DS402 Homing parameters by means of SDWrite method.

ActionCmd_Homing
Executed in background task -> Executes the DS402 Homing procedure

ActionCmd_PowerOff
Executed in fast task -> Switch the power off

ActionCmd_PowerOn
Executed in fast task -> Switch the power on

BackgroundProcessing_user
Empty callback method called every background cycle

CyclicProcessing_user
Empty callback method called every IO cycle

GetAxisReadyToMove
It could be overridden and is called from the library to specify conditions which inhibits the axis to move

OnMotionFailure
This callback is called every time there is an error on computation of motion blocks: it can be used to trigger
an emergency stop of the axis.

OnMotionOutOfRange
This callback is called every time a movement violates the range constraints for an axis: it can be used to
trigger an emergency stop of the axis.

